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Abstract: In recent years, growing number of cryptosystems based on chaos have been proposed. However, most of them 

encounter some problems such as: low level of security and small key space. The key stream generator is the key design issue 

of an encryption system. It directly determines security and efficiency, but most of the proposed key streams are binary valued, 

and suffer from short period and limited key space. In this paper, we propose an n-ary key stream generator, based on 

hierarchical combination of three chaotic maps. We demonstrate that the produced key streams have good statistical 

properties, such as uniform distribution, δ-like auto-correlation function, near-zero cross-correlation and very height 

sensitivity to initial conditions, under precision restricted condition. An image cryptosystem is constructed using the proposed 

approach and proven to be enough secure to resist various attacks. Complexity is analysed and an effective acceleration of 

chaos-based image cryptosystems is shown to be achievable. 
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1. Introduction 

In recent years, owing to the frequent flow of digital 

images across the world over transmission media, it has 

become essential to secure them from leakages. Many 

applications as military image databases, confidential 

video conferencing, medical imaging systems, TV 

cable, online personal albums, etc. require reliable, fast 

and robust security system to store and transmit digital 

images. Most conventional ciphers, such as Data 

Encryption Standard (DES), International Data 

Encryption Algorithm (IDEA), Advanced Encryption 

Standard (AES), Linear Feedback Shift Register 

(LFSR), etc. [1, 2] with high computational security 

consider plaintext as either block cipher or data stream 

and are not suitable for image/video encryption in real 

time because of long execution time due to large data 

volume and strong correlation among image pixels. The 

implementation of traditional algorithms for image 

encryption is even more complicated when they are 

realized by software. 

In the last decades chaotic cryptography has received 

considerable attention when many researchers pointed 

out the existence of a strong relation between chaos and 

cryptography. Actually, both digital and analog chaotic 

encryption methods have been proposed and analyzed 

[3-14]. The main advantage using chaos lies in the 

observation that a chaotic signal looks like noise for the 

unauthorized users. Secondly, some interesting 

properties, such as mixing and sensitivity to initial 

conditions, can be connected with those of good 

ciphers, such as confusion and diffusion [7]. Moreover, 

generating chaotic signal is often of low cost with 

simple iterations, which makes it suitable for the 

construction of stream ciphers. Chaotic stream ciphers 

use chaotic systems to generate pseudorandom key 

stream to encrypt the plaintext element by element. 

Different chaotic systems have been utilized to 

generate such key streams: Forré proposed 2-D Hénon 

attractor [15], Pareek et al. used generalized logistic 

map [16] when Behnia et al. introduced Piecewise 

Linear Chaotic Map (PWLCM) [5]. The key streams 

can then be generated from the outputs of considered 

chaotic systems by different post-processing methods. 

This is done by extracting some bits from chaotic 

orbits determined by the interval reached by chaotic 

orbits, by cascading multiple chaotic systems [8], or 

by coupling chaotic systems [17].  

Generally, a stream cipher algorithm expands a 

given short random key into a pseudo-random key 

stream. Encryption by a stream cipher uses a sequence 

of random numbers to mask a sequence of plaintext of 

the same length, bit by bit. Although, strictly speaking, 

using truly random implementation is impossible. In 

fact, generating truly random number sequence with 

deterministic algorithms is in a state of sin, following 

John von Neumann.  

In practice, pseudorandom numbers are used 

instead. The main problem becomes then to generate 

pseudorandom numbers with “good” properties that 

meet the need of a key stream. A commonly used 

Pseudorandom Number Generator (PRNG) is the 

Linear Congruential Generator (LCG). However, 

chaotic systems can generate orbits that are not 

distinguishable from truly random orbits (e.g., they 
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have broad power spectra, and are extremely sensitive 

to small changes of initial conditions). Accordingly, 

Chaotic Pseudorandom Number Generators (CPRNG) 

have attracted more and more attention [18]. In this 

paper, a new approach is suggested for fast and secure 

image encryption. We use a special combination of 

chaotic maps to construct a new key stream generator 

which is suitable to use for cryptographic systems, and 

present very interesting properties: uniform 

distribution, statistical pseudo- randomness and 

sensitivity to initial conditions variation.   

We show that a combination of simple chaotic maps, 

can lead to a very complex behavior that implies 

“good” pseudo random sequence. The proposed key 

stream generator has also a large key space and is very 

sensitive to initial conditions variation. To demonstrate 

its efficacy, we employ the so generated key stream 

generated to construct a diffusion-confusion 

cryptographic system and apply it to encipher grey 

level digital images.  

The paper is organized as follows. In section 2 the 

new general chaos-based key stream generator is 

presented. In sections 3 and 4 principal experimental 

results are analyzed. Conclusions and summery of most 

important points are given in section 5. 

2. Proposed Approach 

2.1. Key Stream Generation 

Without loss of generality, let assume that we have a 

plaintext P = {p1, p2, . . . , pl }, a  cipher-text C = {c1, c2, 

. . . , cl }, and a key stream K = {k1, k2, . . . , kl }, all of 

length l, where pi ∈{0,1,…..,n}, ci ∈{0,1,…..,n} and ki 

∈{0,1,…..,n}. For any pi, ki, there exists a ci, such that 

ci = E(pi ⊕ ki ), and for any ci, ki, there exists pi, such 

that pi = D(ci ⊕ ki ) where E(·) and D(·) are the 

encryption and the decryption functions respectively. 

Our goal in this work is to design an n-valued 

keystream generator, using a special combination of 

chaotic maps. Let’s consider a one-dimensional non 

linear chaotic map ΓX:I→I, such that I⊂ℜ, and its 

corresponding differences equation: 
 

                        Xm+1= Γx(Xm)                                       (1) 
 

Given an initial value X0, {Xm, m=1, 2, …… } is the 

corresponding chaotic orbit. ΓX is a continuous 

mapping that verifies the mixing propriety, the 

topological transitivity and the density of periodic 

points in I. With a proper choice of the initial condition 

X0, the generated orbit will be bounded in a limited 

region that corresponding to the attractor of the system 

described by equation 1. Let consider Xmax and Xmin the 

upper and the lower boundaries of the attractor and then 

partition the region [Xmin, Xmax] into N disjoint equal 

sub-regions {Ri ,1 ≤ i  ≤ N} such that : 

    ji for   jIiI      
N

i
iImaxX,minX ≠∅=∩

=
= U

1
][             (2)        

A random n-ary sequence S of length N {Si, 1 ≤i ≤ 

N} is then generated, and a one to one mapping is 

created between each element Si and the region Ri. 

The sequence values belong to the set {1, 2,…, n} 

taken with a uniform selection probability. So the 

number of regions N must be a multiplicand of n to 

ensure that all values are present with the same 

proportionality in the sequence, hence ensuring a 

uniform distribution of the final generated stream. 

Originally, the association between the sequence 

elements  {Si , 1 ≤i ≤ N} and the regions {Ri, 1 ≤i ≤ 

N}  is at an agreed setting, for example, we can set the 

original sequence to an ordered sequence of N value 

such that  

         Si=(i mod n) for i=1…N.                    (3)   

The association will then be: 

    S1→R1, S2→R2,……….,SN→RN                      (4) 

When the chaotic equation 1 is iterated, Xi values 

will be distributed chaotically in the system attractor 

([Xmin, Xmax]) in different manners according to the 

initial value X0. At each iteration step t, one can 

chooses the Si value corresponding to the region Ri 

such that Xt∈Ri as the output of the stream generator 

at the time t. It has been shown that usually such 

approach leads the key stream to fall rapidly into a 

short period [19], which will degrade the randomness 

quality of the stream. To avoid such behavior, the one 

to one mapping between the sub regions Ri and the 

random sequence of elements Si is changed 

dynamically after each ∆ iterations of the map (1). We 

use the orbit of another chaotic map ΓY:I→I with 

corresponding differences equation: 
 

    Ym+1= ΓY(Ym)                                (5)      
 

As a pseudo- random sequence to generate the 

dynamical association. Let Y0 be a predetermined 

value from the interval I used as initial condition for 

equation 5. Dropping the first N0 iterations of equation 

5 we can get its corresponding chaotic orbit: 

          YN0+1,YN0+2, …..., YN0+N                                      (6) 

With the same length as the sequence S, equal to the 

number of sub regions Ri. Equation 6 is then 

rearranged in a decreasing order to obtain a new 

sequence: 

                           Y’1,Y’2,…….,Y’N                                               (7) 

Such that Y’j=YN0+i if YN0+i is located in the j
th

 

position after sorting. The sequence S is then 

rearranged using the equation 7 and new associations 

are created like the following: 
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                SY’1→R1, SY’2→R2,……….,SY’N→RN                     (8)   

This process is repeated after each ∆ iterations of the 

map (1). To ensure randomness, the initial value of 

equation 5 is changed each time the sequence is 

generated. In this work, we choose to set the initial 

value Y
K

0 after each K*∆ iteration to:  

                           Y
K

0=Fract(Y0+XK*∆)                         (9)               

where Y0 is a predetermined value from I,  XK*∆ is the 

last obtained value of the map (1), and Fract(x): give 

the fractional part of a real, number x. 
 

So the initial condition of the map (5) will take 

respectively the values Y
1
0,Y

2
0,…,Y

p
0, when p depends 

on the keystream  length l  and the ∆ parameter (p is the 

number of times the association between the sequence 

elements Si and the regions Ri is recreated) . The 

parameter ∆ greatly influences the resulting key stream. 

Accordingly, we propose to change it dynamically 

during the iterations instead of fixing its value. We 

actually find that this enhances the key stream 

randomness and sensibility to initial parameters. Let 

use a third chaotic map ΓZ:I→I with corresponding 

differences equation: 

Zm+1= ΓZ(Zm)                       (10)        
 

Using predetermined initial value Z0, the generated 

orbit {Zm,m=1,2,…… } will serve to produce different 

values of  ∆ using the formula : 
 

            ∆i=floor (ZN0+i+1 * 10
α
)                    (11)              

 

where ∆i is the number of iterations performed before 

changing the association, and ZN0+i is the i
th
 value 

obtained by equation 9 after dropping the first N0 

iterations. 

The exponent α is a parameter that depends on the 

size of the generated stream, and determines the 

frequency of dynamic association generation. To make 

good compromise between the execution time and the 

efficacy of the generated stream randomness, we 

choose to set this exponent to:  
 

 α = Floor(log10(stream_size))-2                 (12) 
 

Equation 12 has been determined experimentally and 

proved to give most appropriate result. Using the maps 

and the parameters presented above, a keystream of 

length l can be generated as follows: 

1. Iterate N0 times the maps (1) and (10) for a given 

values X0 and Z0; 

2. Set ∆0 =floor(ZN0+1*10
4
) and start iterating (5) from 

Y
1
0 computed using equation 9 to generate N-value 

orbit; 

3. Rearrange the sequence S using the  ΓY produced 

orbit and create the association with regions {Ri ,1 ≤ 

i  ≤ N}; 

4. Iterate (1) for ∆0 time and produce a key stream 

element at each iteration using the association and 

the  ΓX produced orbit : 
 

           ki=Sj such that Xi ∈Rj                                      (13) 

5. Compute the new ∆1 using equation 11, Y
1
0 using 

equation 9 ; 

6. Repeat steps 3 and 4 until we get the desired 

stream length. 

The block diagram of the proposed algorithm is 

illustrated in Figure 1. This algorithm can be used by 

choosing any combination of chaotic maps ΓX, ΓY and 

ΓZ that verifying the mixing property and sensibility to 

initial conditions. Furthermore, different values of n 

can be used to produce keystreams with different 

scales (e.g., binary if n=2). In our experiments, we 

choose the logistic map defined by: 
 

                              Γ(x)= µ.x.(1-x)                          (14) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram block of the proposed key stream generation 

approach. 

Input: X0, Y0, Z0, N0, N, n, 

Stream_size 

Generate the initial sequence Si(1≤i≤N) 

according to (3) 

Iterate ΓX, ΓZ for N0 time 

i:=0; j:=0 

∆i=floor (ZN0+i+1 * 10p) 

Yi
0= Fract(Y0+X(i*∆i)+1) 

Generate N value of the ΓY orbit 

Sort of the Ym orbit and update Si↔ Ri 

associations 

j≤∆i 

XN0+j= Γx(XN0+j-1) 

Produce the jth stream element kj using 

the formula (12) 

j:=j+1 

j≤ stream_size 

i:=i+1 

Yes 

No 

Yes 

No Output key 

stream 
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To represent ΓX, ΓY and ΓZ. This map has chaotic 

behavior [20] in the interval I = [0, 1] when µ∈[3.57, 

4]. Table 1 summarizes the different parameters used to 

experiment the proposed approach. Variable parameters 

can be used as the key of generated key stream.  

Table 1. Different parameter of the key stream generation process. 

Parameter Description Value 

µ 

n 

Xmin 

Xmax 

X0,Y0,Z0 

N0 

N 

Stream_size 

Logistic map seed 

Stream output maximum bound  

Attractor lower bound 

Attractor upper bound 

Initial condition of ΓX, ΓY  and ΓZ 

Iterations initial steps   

Number of Regions  

Size of generated stream 

4.0 

256 

0 

1 

Variable  

Variable  

Variable  

Variable  

2.2. Design of the Encryption / Decryption      

       System 

Based on the approach explained above, one can 

construct an encryption system using the generated key 

stream for a diffusion process. We propose in the 

following a simple confusion/diffusion system to 

encrypt grey level digital images.  The general schema 

of the proposed cryptosystem is illustrated in Figure 2. 

2.2.1. Confusion Stage 

The confusion process is realized solely by permuting 

all pixels by an invertible discretized 2D standard map, 

without mixing their values [6]. As the corner pixel (x 

= 0, y = 0) is not permuted at all under the standard 

map, a random scan couple (rx, ry ) is included to 

permute this pixel with another one. The resulting 

modified standard map equations are given by the 

following: 

  

























 +++=+

+++=+

 Mmod )
M

1kx 2π
 sinCKyrk(y1ky

 Mmod )kyyrxrk(x1kx

       (15) 

where (xk, yk) and (xk+1, yk+1) are respectively the 

original and the permuted pixel position of an M×M 

image. The standard map parameter KC is an integer 

number. 

 

 

 

 

 

 

 

Figure 2. General architecture of the proposed encryption system. 

2.2.2. Diffusion Stage 

The permuted image of size M×M is first transformed 

to a one dimensional array of length M*M. If we 

suppose that the diffusion stage is performed for m 

times, a key stream of length m*M*M is generated 

using the approach presented in the section 2.1. At 

each iteration step, the result of the permutation 

process is combined with the corresponding element 

of the key stream as follows: 
 

   






⊕⊕+=

=

ik)1-iC256) mod )iki(((piC
dK1-C

                (16) 

where pi is the value of the i
th
 pixel of the permuted 

image, ki is the i
th
 element of the keystream, ci-1 and ci 

are the value of the (i-1)
th
 and the i

th
 pixel of the 

diffused image, respectively. The seed of the diffusion 

function is c-1  obtained from the diffusion key Kd. 

2.3. Key Scheming 

The key directly used in the proposed encryption 

scheme is a vector of 7 parameters including diffusion 

and confusion ones, the three real values X0, Y0, Z0, 

the integer values KC, N0, N and the iterations count 

m. Real values are coded on 51 bit to ensure a 

precision of  10
-15

. We use 51 bit to code KC, 16 bits to 

code N0 and 5 bits for both N and m. These lead to a 

key size of 230 bit, making the key space as large as 

2
230

 possible combination. This is larger than the 

acknowledged most security AES standard. 
Kd, rx and ry are directly derived from the 230 bit user 

key. Kd is coded on 8 bits, when rx and ry codification 

size depend on the image size M (ex: 8 bits for a 

256x256 image).  

3. Key Stream Properties Analysis 

In what follows, different experiments are performed 

to test the statistical properties of the key stream 

outputted, and its sensibility to initial conditions. All 

tests are performed on a 3GHz Intel Pentium (IV), 

with 1Go memory size and 80Go hard-disk capacity. 

We use the precision of 10
-15

 easily realized on today’s 

personal computers.   

3.1. Keystream Distribution  

From the point of view of strict cryptography, chaotic 

sequences have to satisfy uniform distribution which 

is most important to prevent any kind of statistical 

attack. To prove the pseudo-uniformity of the 

keystream, we use the chi-square test [21] and the 

Kolmogorov-Smirnov test [22] on 300 generated 

instances of the key stream with size 10
7
, using 

random combinations of parameters. The chi-square 

test is applied using: 

Confusion             
(Pixel 

permutation) 

Diffusion             
(Pixel 

modification) 
Plain 

Image 

Ciphered 

Image 

Parameters extraction  
Secret 

Key 

m rounds  
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n

1i ie
iei(o2

test
χ

2)                                 (17) 

where n is the number of levels in the output key 

stream, oi, and ei are respectively the occurrence 

observed and expected frequencies of each level. When 

using a significance level of 0.05, we find that χ2
test < 

χ2
255,0.05 , so the null hypothesis is not rejected and the 

distribution of the key stream is uniform.  The 

Kolmogorov-Smirnov test is used to test the null 

hypothesis that the population distribution from which 

the data sample is drawn is a uniform distribution.  

The Kolmogorov-Smirnov statistic for a given function 

F(x) is: 

             F(x)-(x)kF
x

D sup=                   (18) 

where Fk(x) is the empirical distribution and F(x) is the 

mathematical expression of the uniform distribution. 

We have to test the null hypothesis H0:”Fk(x)=F(x) for 

all x”, against the hypothesis H1:”Fk(x)≠F(x) for some 

value of x”. The used critical region of size α = 0.05 

corresponds to values of D greater than the 0.95 

quantile 0.085, obtained from the Kolmogorov-

Smirnov table for n=256 [23]. When computing D, we 

find that D=0.0634< 0.085. So the hypothesis is 

accepted and the distribution is uniform. Figure 3 

shows the obtained histogram of a key stream with size 

10
7
, obtained using X0=0.43384, Y0=0.5728658, 

Z0=0.229145, N0=10000 and N=10. 

 

Figure 3. Histogram of the key stream generated using the key 

values: X0=0.43384, Y0=0.5728658, Z0=0.229145, N0=10000 and 

N=10. 

3.2. Information Entropy  

The entropy is the most outstanding feature of 

randomness [24]. Information theory is a mathematical 

theory of data communication and storage founded by 

Claude E. Shannon in 1949 [25]. It is well known that 

the entropy H of a symbol source S can be calculated 

as:    

            ∑
=

=
1-N2

1i )iP(m
1(2).logiP(mH(m) )                 (19) 

where P(mi) represents the probability of symbol mi 

and the entropy is expressed in bits. Actually, given 

that a real information source seldom transmits 

random messages, in general, the entropy value of the 

source is smaller than the ideal one. If all the symbols 

have equal probabilities, then the entropy H(m) is 

equal to 8, corresponding to a truly random source. 

Let us consider the key stream generated with our 

approach and containing 256 different symbols and 

using the same parameters of Figure 1.  The number of 

occurrences of each symbol block is recorded and the 

probability of occurrence is computed. We obtain the 

entropy H(m) = 7.999916. The value obtained value is 

very close to the theoretical one of 8, meaning that 

information leakage in the generated key stream is 

negligible and the encryption system can be trusted 

upon the entropy attack.  

3.3. Sensitivity to Initial Conditions  

High key sensitivity is required by secure 

cryptosystems, which means that the cipher text 

cannot be decrypted correctly although there is only a 

slight difference between encryption or decryption 

keys. This guarantees to some extent the security of a 

cryptosystem against brute-force attacks. In our case, 

the sensitivity is determined with respect to initial 

values of the different parameters. The cryptosystem 

will be enough secure to resist brute force attacks 

when sensitivity to initial parameters is increased. We 

use a measure of sensitivity analogous to that used in 

[26]. The change rate in the keystream K is computed 

by: 

   









 ==

∑
=

=

+==

else   

[i]1KK[i] if   [i])1KDifp(K[i],

size(K)

1i
[i]1KDifp(K[i],)1KDiff(K,

Size(K)*2

)2KDiff(K,)1KDiff(K,
)pCdr(p

0

1

)

%100.0

          (20) 

where K is the keystream generated when p=p0, K1 is 

the key stream generated when p=p0+∆p, and K2 the 

key stream generated when p=p0-∆p. Cdr is the 

keystream difference rate. Diff is a function 

computing the number of different keystream values. 

We studied the sensitivity of the keystream according 

to the parameters X0, Y0 and Z0 with ∆p set to 10
-15

, 

and according to N0, N with ∆p set to 1. In all cases, 

the stream size was of 10
6
 elements. At each time a 

value is assigned to a parameter, 300 random values 

are generated for other ones, and the resulting change 

rates are averaged.  

Figures 4 and 5 illustrate the change rate with 

respect to the variation of real valued and integer 

parameters respectively. We can see that the value of 

Cdr is above 97% for all possible values witch ensure 

high sensitivity to initial parameters. The experimental 
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results also demonstrate that the generated key streams 

have a δ-like Auto-Correlation (AC) function and a 

near-zero Cross-Correlation (CC) function, which are 

shown in Figure 6. We have used the keystream K 

generated with X0=0.29384, Y0=0.6254, Z0=0.4587254, 

N0=24000 and N=8. 

 

Figure 4. Key sensitivity test of the generated keystream with 

respect to x0,y0 and z0 parameters.   

 
a. with respect to N. 

 

 
b. with respect to N0. 

 
Figure 5. Key sensitivity test of the generated keystream . 

CC is computed between K and the key streams: K1 

generated when varying X0 by ∆X0=10
-14

, K2 generated 

when varying Y0 by ∆Y0=10
-14

, K3 generated when 

varying Z0 by ∆Z0=10
-14

, K4 generated when varying N0 

by ∆N0=1 and K5 generated when varying N by ∆N=1. 

The AC and CC functions are defined as:  

 

                                 2K1K that    such                    

  
Ksize

i
K-r][i2KK-[i]1K

)1Size(K
1)2K,1(KrCC

Ksize

i
K-r]K[iK-K[i]

Size(K)
1(K)rAC

≠

∑
−

=
+=

∑
−

=
+=

1)
1

(

0
)2)(1(

1)(

0
))((

(21) 

where K  is the mean value of the key stream k, K[i] 

is the i
th

 element of K and r is the shift parameter.  

 
                                             

 

 

 

 

 

       a. Auto-correlation.                         b. Cross correlation with K1. 

 
 
 

 

 
 

 

 
 

          c. Cross correlation with K2.                  d. Cross correlation with K3. 

 
 
 

 

 
 

 

 
 

          e. Cross correlation with K4..                  f. Cross correlation with K5. 

Figure 6. Correlation of the generated keystream. 

4. Cryptosystem Security Analysis  

Encryption and decryption results are given in this 

section demonstrating the efficiency of our proposed 

algorithm. We take the traditional 256×256 size 8 bits 

“Lenna” image as example. The positions permutation 

and the pseudorandom key stream used for grayscale 

substitution are generated following the scheme 

proposed in section 2.2. Original image and its 

histogram are shown in Figures 7(a) and (b), and the 

encrypted image and its histogram is shown in Figure 

7(c) and (d). Initial parameters were: X0= 

0.567676469135816, Y0= 0.60354653336181, Z0= 

0.339824617849325, N0= 6067, N=11 KC = 

0.703756097336475 and m=8 corresponding to the 

230 bit key: 

“1395F87B4BCB9514041766CE33B5BE7”. In 

Figure 7(d) we can see the grayscale distribution of 

the encrypted image has good balance property, and 

the histogram is significantly different from that of the 

original image which is secure against known 

plaintext attack.  
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            a. Plain image.                                b. Histogram of plain image. 

                                                                        

 

 

 

 

 

 

 

 

 

 

       c. Encrypted image.                         d. Histogram of enciphered image. 

 

 
 

  

 
 

 

 
 

 

 
 

 
 

e. Image decrypted with one                 f. Difference between (c) and (e). 

   bit different of the correct key.                                                                                        

Figure 7. Key sensitivity. 

4.1. Key Sensitivity  

Recall that secure cryptosystem requires not only a 

large key space but also a high key sensitivity. That is, 

a slight change in the key should cause some large 

changes in the ciphertext. This property makes the 

cryptosystem of high security against statistical or 

differential attacks. Since the user key is in 230 bits, the 

key space is about 1.7254 .10
69

, which is sufficient to 

resist the brute-force attack with the current computer 

technology.  

An encryption scheme has also to be key-sensitive, 

meaning that a tiny change in the key will cause a 

significant change in the output. Figure 7(e) shows an 

example of an enciphered image generated using a 

security key with only 1-bit difference. It can be 

observed that the difference values are very close to the 

expected value of pixel difference on two randomly 

generated images (99.609375%).  Figure 8 shows the 

values of differences between the correct decrypted 

image and the different decrypted images with the 230 

possible keys that differs in one bit from the correct 

one.   

 

Figure 8. Differences between the corrected decrypted image and 

those decrypted with the 230 possible keys that differs in one bit 

from the correct key. 

4.2. Correlation of Adjacent Pixels 

To test the correlation properties of the enciphered 

image, we performed statistical analysis on the 

encryption algorithm. This is done by testing the 

correlation between two vertically adjacent pixels, two 

horizontally adjacent pixels, and two diagonally 

adjacent pixels, respectively.  

We randomly select 1000 pairs of two adjacent 

pixels from the image then we calculate the correlation 

coefficient of each pair using the following discrete 

formulas [28]: 

   

       
N

1i

2E(x))-i(x
N

D(x)  ,
N

1i
ix

N
E(x)

N

1i
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Here, E(x) is the estimation of mathematical 

expectations of x, D(x) is the estimation of variance of 

x, and cov(x, y) is the estimation of covariance 

between x and y. x and y are grey-scale values of two 

adjacent pixels in the image. Figure 9 shows the 

correlation distribution of two vertically adjacent 

pixels in the plain-image and those in the ciphered 

image. The average correlation coefficients are 

0.9792062 and 0.0030121 respectively. Similar results 

for diagonal and vertical directions were obtained. 

These are shown in Table 2. It is clearly visible that 

correlation coefficients are very different when 

comparing plain and ciphered images.  

Table 2. Correlation coefficients of adjacent pixels of plain image, 
ciphered image and a random one 

   Plain image 

‘Lena’ 

Ciphered 

image 

Random 

image 

Horizontal  

Vertical 

Diagonal 

0.9537214 

0.9792062 

0.9245871 

0.0046591 

0.0030121 

0.0047814 

0.001562 

0.005922 

0.004006 
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a. The plain Lena image. 

 
b. The cipher image obtained using the proposed scheme. 

Figure 9. Correlation analysis of two horizontally adjacent pixels. 

4.3. Differential Attacks 

It is clear that if one minor change in the plain image 

can cause a significant change in the ciphered-image, 

with respect to both diffusion and confusion, then a 

differential attack may become inefficient. To test the 

influence of one-pixel change on our whole encrypted 

image, two common measures are used:  NPCR and 

UACI. The first one stands for the number of pixels 

change rate while one-pixel of plain image is changed, 

when the second is the unified average changing 

intensity that measures the average intensity of 

differences between the plain and ciphered image.  

To calculate NPCR and UACI, consider two 

ciphered images C1 and C2, whose corresponding plain 

images have only one pixel difference. The gray values 

of each pixels in C1 or C2 is labeled C1(i, j) or C2(i, j) 

respectively. If we define a bipolar array D with the 

same size as image C1 or C2, with D(i, j) being 

determined by C1(i, j) and C2(i, j): if C1(i, j) = C2(i, j) 

then D(i, j) = 0, otherwise D(i, j) = 1. The NPCR will 

be defined by: 
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where M is the border size of both images C1 and C2, 

and NPCR measures the percentage of different pixel 

numbers between the two images. The UACI is 

defined by: 
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Tests have been performed on the proposed 

scheme, about the one-pixel change influence on a 256 

grey-scale image of size 256×256. We computed the 

average of both NPCP and UCAI when changes of 

each pixel of the image are applied with the 256 

possible value of grey level, i.e. average is taken on 

the 256
3
 possible situations. The encryption process 

was performed using the parameters presented in 

section 4.  

The obtained values of NPCR and UCAI were of 

99.51% and 33.45% respectively. These results show 

that even swiftly change in the original image will 

result in significant change in the ciphered one. The 

algorithm proposed has then good ability to anti 

differential attack. 

In Figure 10, we show the progression of the NPCR 

and UCAI values with respect to the number of 

iterations (confusion-diffusion) m. The graphs show 

that both performance indices raise rapidly indicating 

good confusion and diffusion effects. It is clear that 

our proposed schema can achieve very accepted 

performances with relatively small iteration number, 

compared to other approaches.   

 

Figure 10. Progress of NPCR and UACI with respect to the 

number of confusion/diffusion iterations. 
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4.4. Computational Complexity Analysis 

Compared with traditional block ciphers [28] such as 

DES, IDEA and NSSU, the proposed chaos-based 

cryptosystem has some distinct properties. Here, tests 

are performed on the encryption speed of the proposed 

chaotic cryptosystem. The comparison between 

different approaches is performed with respect to 

practical time complexity, when executed in the same 

environment and conditions. Most part of the 

implementation was realized using Intel Assembly 

instruction to guarantee the maximum of execution 

speed. The speed of the proposed encryption algorithm 

is much faster than most existing encryption ones. Its 

average speed is about 30 MByte/s with a Pentium IV 

3GHz personal computer. Table 3 shows the result of 

the encryption speed and speed of some well-known 

encryption algorithms in Crypto++ Library [29] using 

the same machine. With such a speed, this image 

encryption scheme can be used in Internet applications 

over broadband network, where the encryption and 

decryption time have to be short compared to the 

transmission time. Table 4 gives an idea about the 

Encryption/Decryption time when varying iterations 

with corresponding NPCR and UACI values, using the 

image of Lena 256×256, and the key previously used in 

section 4. 

Table 3. Encryption speed of the proposed scheme and some well-

known algorithms. 

  Algorithm Speed (MB/s) 

Proposed Approach 
DES 

AES (192-bit key) 

AES (256-bit key) 

29.785 
6.212 

11.472 

10.972 
 

Table 4. Encryption /Decryption time for different iterations values 

with corresponding NPCR and UACI. 

 

5.  Conclusions 

In this paper, an image encryption scheme based on 

chaotic maps combination is proposed. The system is in 

a stream-cipher architecture, where the pseudo-random 

keystream generator is constructed using three chaotic 

maps, serving the purpose of stream generation and 

random mixing, respectively. It is found that such a 

design can enhance the randomness and sensitivity to 

initial conditions even under finite precision 

implementation. We stress out that our approach is 

applicable to almost all chaotic maps with mixing 

property and that the achievement of the key streams 

with the desired long cycle length is almost easy. A 

detailed statistical analysis on both stream generation 

system and the encryption scheme is given. 

Experimental results, allow concluding that this 

algorithm outperforms existing schemes, both in term 

of speed and security. Having a high throughput, the 

proposed system is ready to be applied in fast real time 

encryption applications and suitable for practical use 

in the secure transmission of confidential information 

over the Web. 
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