
The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010 231

Chaos-Based Key Stream Generator

Based on Multiple Maps Combinations and its

Application to Images Encryption

Kamel Faraoun

Département d’informatique, UDL University, Algeria

Abstract: In recent years, growing number of cryptosystems based on chaos have been proposed. However, most of them

encounter some problems such as: low level of security and small key space. The key stream generator is the key design issue

of an encryption system. It directly determines security and efficiency, but most of the proposed key streams are binary valued,

and suffer from short period and limited key space. In this paper, we propose an n-ary key stream generator, based on

hierarchical combination of three chaotic maps. We demonstrate that the produced key streams have good statistical

properties, such as uniform distribution, δ-like auto-correlation function, near-zero cross-correlation and very height

sensitivity to initial conditions, under precision restricted condition. An image cryptosystem is constructed using the proposed

approach and proven to be enough secure to resist various attacks. Complexity is analysed and an effective acceleration of

chaos-based image cryptosystems is shown to be achievable.

 Keywords: Chaotic maps, images cryptography, key stream generation, security.

Received December 1, 2008; accepted January 27, 2009

1. Introduction

In recent years, owing to the frequent flow of digital

images across the world over transmission media, it has

become essential to secure them from leakages. Many

applications as military image databases, confidential

video conferencing, medical imaging systems, TV

cable, online personal albums, etc. require reliable, fast

and robust security system to store and transmit digital

images. Most conventional ciphers, such as Data

Encryption Standard (DES), International Data

Encryption Algorithm (IDEA), Advanced Encryption

Standard (AES), Linear Feedback Shift Register

(LFSR), etc. [1, 2] with high computational security

consider plaintext as either block cipher or data stream

and are not suitable for image/video encryption in real

time because of long execution time due to large data

volume and strong correlation among image pixels. The

implementation of traditional algorithms for image

encryption is even more complicated when they are

realized by software.

In the last decades chaotic cryptography has received

considerable attention when many researchers pointed

out the existence of a strong relation between chaos and

cryptography. Actually, both digital and analog chaotic

encryption methods have been proposed and analyzed

[3-14]. The main advantage using chaos lies in the

observation that a chaotic signal looks like noise for the

unauthorized users. Secondly, some interesting

properties, such as mixing and sensitivity to initial

conditions, can be connected with those of good

ciphers, such as confusion and diffusion [7]. Moreover,

generating chaotic signal is often of low cost with

simple iterations, which makes it suitable for the

construction of stream ciphers. Chaotic stream ciphers

use chaotic systems to generate pseudorandom key

stream to encrypt the plaintext element by element.

Different chaotic systems have been utilized to

generate such key streams: Forré proposed 2-D Hénon

attractor [15], Pareek et al. used generalized logistic

map [16] when Behnia et al. introduced Piecewise

Linear Chaotic Map (PWLCM) [5]. The key streams

can then be generated from the outputs of considered

chaotic systems by different post-processing methods.

This is done by extracting some bits from chaotic

orbits determined by the interval reached by chaotic

orbits, by cascading multiple chaotic systems [8], or

by coupling chaotic systems [17].

Generally, a stream cipher algorithm expands a

given short random key into a pseudo-random key

stream. Encryption by a stream cipher uses a sequence

of random numbers to mask a sequence of plaintext of

the same length, bit by bit. Although, strictly speaking,

using truly random implementation is impossible. In

fact, generating truly random number sequence with

deterministic algorithms is in a state of sin, following

John von Neumann.

In practice, pseudorandom numbers are used

instead. The main problem becomes then to generate

pseudorandom numbers with “good” properties that

meet the need of a key stream. A commonly used

Pseudorandom Number Generator (PRNG) is the

Linear Congruential Generator (LCG). However,

chaotic systems can generate orbits that are not

distinguishable from truly random orbits (e.g., they

The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

232

have broad power spectra, and are extremely sensitive

to small changes of initial conditions). Accordingly,

Chaotic Pseudorandom Number Generators (CPRNG)

have attracted more and more attention [18]. In this

paper, a new approach is suggested for fast and secure

image encryption. We use a special combination of

chaotic maps to construct a new key stream generator

which is suitable to use for cryptographic systems, and

present very interesting properties: uniform

distribution, statistical pseudo- randomness and

sensitivity to initial conditions variation.

We show that a combination of simple chaotic maps,

can lead to a very complex behavior that implies

“good” pseudo random sequence. The proposed key

stream generator has also a large key space and is very

sensitive to initial conditions variation. To demonstrate

its efficacy, we employ the so generated key stream

generated to construct a diffusion-confusion

cryptographic system and apply it to encipher grey

level digital images.

The paper is organized as follows. In section 2 the

new general chaos-based key stream generator is

presented. In sections 3 and 4 principal experimental

results are analyzed. Conclusions and summery of most

important points are given in section 5.

2. Proposed Approach

2.1. Key Stream Generation

Without loss of generality, let assume that we have a

plaintext P = {p1, p2, . . . , pl }, a cipher-text C = {c1, c2,

. . . , cl }, and a key stream K = {k1, k2, . . . , kl }, all of

length l, where pi ∈{0,1,…..,n}, ci ∈{0,1,…..,n} and ki

∈{0,1,…..,n}. For any pi, ki, there exists a ci, such that

ci = E(pi ⊕ ki), and for any ci, ki, there exists pi, such

that pi = D(ci ⊕ ki) where E(·) and D(·) are the

encryption and the decryption functions respectively.

Our goal in this work is to design an n-valued

keystream generator, using a special combination of

chaotic maps. Let’s consider a one-dimensional non

linear chaotic map ΓX:I→I, such that I⊂ℜ, and its

corresponding differences equation:

 Xm+1= Γx(Xm) (1)

Given an initial value X0, {Xm, m=1, 2, …… } is the

corresponding chaotic orbit. ΓX is a continuous

mapping that verifies the mixing propriety, the

topological transitivity and the density of periodic

points in I. With a proper choice of the initial condition

X0, the generated orbit will be bounded in a limited

region that corresponding to the attractor of the system

described by equation 1. Let consider Xmax and Xmin the

upper and the lower boundaries of the attractor and then

partition the region [Xmin, Xmax] into N disjoint equal

sub-regions {Ri ,1 ≤ i ≤ N} such that :

 ji for jIiI
N

i
iImaxX,minX ≠∅=∩

=
= U

1
][(2)

A random n-ary sequence S of length N {Si, 1 ≤i ≤

N} is then generated, and a one to one mapping is

created between each element Si and the region Ri.

The sequence values belong to the set {1, 2,…, n}

taken with a uniform selection probability. So the

number of regions N must be a multiplicand of n to

ensure that all values are present with the same

proportionality in the sequence, hence ensuring a

uniform distribution of the final generated stream.

Originally, the association between the sequence

elements {Si , 1 ≤i ≤ N} and the regions {Ri, 1 ≤i ≤

N} is at an agreed setting, for example, we can set the

original sequence to an ordered sequence of N value

such that

 Si=(i mod n) for i=1…N. (3)

The association will then be:

 S1→R1, S2→R2,……….,SN→RN (4)

When the chaotic equation 1 is iterated, Xi values

will be distributed chaotically in the system attractor

([Xmin, Xmax]) in different manners according to the

initial value X0. At each iteration step t, one can

chooses the Si value corresponding to the region Ri

such that Xt∈Ri as the output of the stream generator

at the time t. It has been shown that usually such

approach leads the key stream to fall rapidly into a

short period [19], which will degrade the randomness

quality of the stream. To avoid such behavior, the one

to one mapping between the sub regions Ri and the

random sequence of elements Si is changed

dynamically after each ∆ iterations of the map (1). We

use the orbit of another chaotic map ΓY:I→I with

corresponding differences equation:

 Ym+1= ΓY(Ym) (5)

As a pseudo- random sequence to generate the

dynamical association. Let Y0 be a predetermined

value from the interval I used as initial condition for

equation 5. Dropping the first N0 iterations of equation

5 we can get its corresponding chaotic orbit:

 YN0+1,YN0+2, …..., YN0+N (6)

With the same length as the sequence S, equal to the

number of sub regions Ri. Equation 6 is then

rearranged in a decreasing order to obtain a new

sequence:

 Y’1,Y’2,…….,Y’N (7)

Such that Y’j=YN0+i if YN0+i is located in the j
th

position after sorting. The sequence S is then

rearranged using the equation 7 and new associations

are created like the following:

Chaos-Based Key Stream Generator Based on Multiple Maps Combinations…

233

 SY’1→R1, SY’2→R2,……….,SY’N→RN (8)

This process is repeated after each ∆ iterations of the

map (1). To ensure randomness, the initial value of

equation 5 is changed each time the sequence is

generated. In this work, we choose to set the initial

value Y
K

0 after each K*∆ iteration to:

 Y
K

0=Fract(Y0+XK*∆) (9)

where Y0 is a predetermined value from I, XK*∆ is the

last obtained value of the map (1), and Fract(x): give

the fractional part of a real, number x.

So the initial condition of the map (5) will take

respectively the values Y
1
0,Y

2
0,…,Y

p
0, when p depends

on the keystream length l and the ∆ parameter (p is the

number of times the association between the sequence

elements Si and the regions Ri is recreated) . The

parameter ∆ greatly influences the resulting key stream.

Accordingly, we propose to change it dynamically

during the iterations instead of fixing its value. We

actually find that this enhances the key stream

randomness and sensibility to initial parameters. Let

use a third chaotic map ΓZ:I→I with corresponding

differences equation:

Zm+1= ΓZ(Zm) (10)

Using predetermined initial value Z0, the generated

orbit {Zm,m=1,2,…… } will serve to produce different

values of ∆ using the formula :

 ∆i=floor (ZN0+i+1 * 10
α
) (11)

where ∆i is the number of iterations performed before

changing the association, and ZN0+i is the i
th
 value

obtained by equation 9 after dropping the first N0

iterations.

The exponent α is a parameter that depends on the

size of the generated stream, and determines the

frequency of dynamic association generation. To make

good compromise between the execution time and the

efficacy of the generated stream randomness, we

choose to set this exponent to:

 α = Floor(log10(stream_size))-2 (12)

Equation 12 has been determined experimentally and

proved to give most appropriate result. Using the maps

and the parameters presented above, a keystream of

length l can be generated as follows:

1. Iterate N0 times the maps (1) and (10) for a given

values X0 and Z0;

2. Set ∆0 =floor(ZN0+1*10
4
) and start iterating (5) from

Y
1
0 computed using equation 9 to generate N-value

orbit;

3. Rearrange the sequence S using the ΓY produced

orbit and create the association with regions {Ri ,1 ≤

i ≤ N};

4. Iterate (1) for ∆0 time and produce a key stream

element at each iteration using the association and

the ΓX produced orbit :

 ki=Sj such that Xi ∈Rj (13)

5. Compute the new ∆1 using equation 11, Y
1
0 using

equation 9 ;

6. Repeat steps 3 and 4 until we get the desired

stream length.

The block diagram of the proposed algorithm is

illustrated in Figure 1. This algorithm can be used by

choosing any combination of chaotic maps ΓX, ΓY and

ΓZ that verifying the mixing property and sensibility to

initial conditions. Furthermore, different values of n

can be used to produce keystreams with different

scales (e.g., binary if n=2). In our experiments, we

choose the logistic map defined by:

 Γ(x)= µ.x.(1-x) (14)

Figure 1. Diagram block of the proposed key stream generation

approach.

Input: X0, Y0, Z0, N0, N, n,

Stream_size

Generate the initial sequence Si(1≤i≤N)

according to (3)

Iterate ΓX, ΓZ for N0 time

i:=0; j:=0

∆i=floor (ZN0+i+1 * 10p)

Yi
0= Fract(Y0+X(i*∆i)+1)

Generate N value of the ΓY orbit

Sort of the Ym orbit and update Si↔ Ri

associations

j≤∆i

XN0+j= Γx(XN0+j-1)

Produce the jth stream element kj using

the formula (12)

j:=j+1

j≤ stream_size

i:=i+1

Yes

No

Yes

No Output key

stream

The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

234

To represent ΓX, ΓY and ΓZ. This map has chaotic

behavior [20] in the interval I = [0, 1] when µ∈[3.57,

4]. Table 1 summarizes the different parameters used to

experiment the proposed approach. Variable parameters

can be used as the key of generated key stream.

Table 1. Different parameter of the key stream generation process.

Parameter Description Value

µ

n

Xmin

Xmax

X0,Y0,Z0

N0

N

Stream_size

Logistic map seed

Stream output maximum bound

Attractor lower bound

Attractor upper bound

Initial condition of ΓX, ΓY and ΓZ

Iterations initial steps

Number of Regions

Size of generated stream

4.0

256

0

1

Variable

Variable

Variable

Variable

2.2. Design of the Encryption / Decryption

 System

Based on the approach explained above, one can

construct an encryption system using the generated key

stream for a diffusion process. We propose in the

following a simple confusion/diffusion system to

encrypt grey level digital images. The general schema

of the proposed cryptosystem is illustrated in Figure 2.

2.2.1. Confusion Stage

The confusion process is realized solely by permuting

all pixels by an invertible discretized 2D standard map,

without mixing their values [6]. As the corner pixel (x

= 0, y = 0) is not permuted at all under the standard

map, a random scan couple (rx, ry) is included to

permute this pixel with another one. The resulting

modified standard map equations are given by the

following:

 +++=+

+++=+

 Mmod)
M

1kx 2π
 sinCKyrk(y1ky

 Mmod)kyyrxrk(x1kx

 (15)

where (xk, yk) and (xk+1, yk+1) are respectively the

original and the permuted pixel position of an M×M

image. The standard map parameter KC is an integer

number.

Figure 2. General architecture of the proposed encryption system.

2.2.2. Diffusion Stage

The permuted image of size M×M is first transformed

to a one dimensional array of length M*M. If we

suppose that the diffusion stage is performed for m

times, a key stream of length m*M*M is generated

using the approach presented in the section 2.1. At

each iteration step, the result of the permutation

process is combined with the corresponding element

of the key stream as follows:

⊕⊕+=

=

ik)1-iC256) mod)iki(((piC
dK1-C

 (16)

where pi is the value of the i
th
 pixel of the permuted

image, ki is the i
th
 element of the keystream, ci-1 and ci

are the value of the (i-1)
th
 and the i

th
 pixel of the

diffused image, respectively. The seed of the diffusion

function is c-1 obtained from the diffusion key Kd.

2.3. Key Scheming

The key directly used in the proposed encryption

scheme is a vector of 7 parameters including diffusion

and confusion ones, the three real values X0, Y0, Z0,

the integer values KC, N0, N and the iterations count

m. Real values are coded on 51 bit to ensure a

precision of 10
-15

. We use 51 bit to code KC, 16 bits to

code N0 and 5 bits for both N and m. These lead to a

key size of 230 bit, making the key space as large as

2
230

 possible combination. This is larger than the

acknowledged most security AES standard.
Kd, rx and ry are directly derived from the 230 bit user

key. Kd is coded on 8 bits, when rx and ry codification

size depend on the image size M (ex: 8 bits for a

256x256 image).

3. Key Stream Properties Analysis

In what follows, different experiments are performed

to test the statistical properties of the key stream

outputted, and its sensibility to initial conditions. All

tests are performed on a 3GHz Intel Pentium (IV),

with 1Go memory size and 80Go hard-disk capacity.

We use the precision of 10
-15

 easily realized on today’s

personal computers.

3.1. Keystream Distribution

From the point of view of strict cryptography, chaotic

sequences have to satisfy uniform distribution which

is most important to prevent any kind of statistical

attack. To prove the pseudo-uniformity of the

keystream, we use the chi-square test [21] and the

Kolmogorov-Smirnov test [22] on 300 generated

instances of the key stream with size 10
7
, using

random combinations of parameters. The chi-square

test is applied using:

Confusion
(Pixel

permutation)

Diffusion
(Pixel

modification)
Plain

Image

Ciphered

Image

Parameters extraction
Secret

Key

m rounds

Chaos-Based Key Stream Generator Based on Multiple Maps Combinations…

235

 ∑
=

−=

n

1i ie
iei(o2

test
χ

2) (17)

where n is the number of levels in the output key

stream, oi, and ei are respectively the occurrence

observed and expected frequencies of each level. When

using a significance level of 0.05, we find that χ2
test <

χ2
255,0.05 , so the null hypothesis is not rejected and the

distribution of the key stream is uniform. The

Kolmogorov-Smirnov test is used to test the null

hypothesis that the population distribution from which

the data sample is drawn is a uniform distribution.

The Kolmogorov-Smirnov statistic for a given function

F(x) is:

 F(x)-(x)kF
x

D sup= (18)

where Fk(x) is the empirical distribution and F(x) is the

mathematical expression of the uniform distribution.

We have to test the null hypothesis H0:”Fk(x)=F(x) for

all x”, against the hypothesis H1:”Fk(x)≠F(x) for some

value of x”. The used critical region of size α = 0.05

corresponds to values of D greater than the 0.95

quantile 0.085, obtained from the Kolmogorov-

Smirnov table for n=256 [23]. When computing D, we

find that D=0.0634< 0.085. So the hypothesis is

accepted and the distribution is uniform. Figure 3

shows the obtained histogram of a key stream with size

10
7
, obtained using X0=0.43384, Y0=0.5728658,

Z0=0.229145, N0=10000 and N=10.

Figure 3. Histogram of the key stream generated using the key

values: X0=0.43384, Y0=0.5728658, Z0=0.229145, N0=10000 and

N=10.

3.2. Information Entropy

The entropy is the most outstanding feature of

randomness [24]. Information theory is a mathematical

theory of data communication and storage founded by

Claude E. Shannon in 1949 [25]. It is well known that

the entropy H of a symbol source S can be calculated

as:

 ∑
=

=
1-N2

1i)iP(m
1(2).logiP(mH(m)) (19)

where P(mi) represents the probability of symbol mi

and the entropy is expressed in bits. Actually, given

that a real information source seldom transmits

random messages, in general, the entropy value of the

source is smaller than the ideal one. If all the symbols

have equal probabilities, then the entropy H(m) is

equal to 8, corresponding to a truly random source.

Let us consider the key stream generated with our

approach and containing 256 different symbols and

using the same parameters of Figure 1. The number of

occurrences of each symbol block is recorded and the

probability of occurrence is computed. We obtain the

entropy H(m) = 7.999916. The value obtained value is

very close to the theoretical one of 8, meaning that

information leakage in the generated key stream is

negligible and the encryption system can be trusted

upon the entropy attack.

3.3. Sensitivity to Initial Conditions

High key sensitivity is required by secure

cryptosystems, which means that the cipher text

cannot be decrypted correctly although there is only a

slight difference between encryption or decryption

keys. This guarantees to some extent the security of a

cryptosystem against brute-force attacks. In our case,

the sensitivity is determined with respect to initial

values of the different parameters. The cryptosystem

will be enough secure to resist brute force attacks

when sensitivity to initial parameters is increased. We

use a measure of sensitivity analogous to that used in

[26]. The change rate in the keystream K is computed

by:

 ==

∑
=

=

+==

else

[i]1KK[i] if [i])1KDifp(K[i],

size(K)

1i
[i]1KDifp(K[i],)1KDiff(K,

Size(K)*2

)2KDiff(K,)1KDiff(K,
)pCdr(p

0

1

)

%100.0

 (20)

where K is the keystream generated when p=p0, K1 is

the key stream generated when p=p0+∆p, and K2 the

key stream generated when p=p0-∆p. Cdr is the

keystream difference rate. Diff is a function

computing the number of different keystream values.

We studied the sensitivity of the keystream according

to the parameters X0, Y0 and Z0 with ∆p set to 10
-15

,

and according to N0, N with ∆p set to 1. In all cases,

the stream size was of 10
6
 elements. At each time a

value is assigned to a parameter, 300 random values

are generated for other ones, and the resulting change

rates are averaged.

Figures 4 and 5 illustrate the change rate with

respect to the variation of real valued and integer

parameters respectively. We can see that the value of

Cdr is above 97% for all possible values witch ensure

high sensitivity to initial parameters. The experimental

The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

236

results also demonstrate that the generated key streams

have a δ-like Auto-Correlation (AC) function and a

near-zero Cross-Correlation (CC) function, which are

shown in Figure 6. We have used the keystream K

generated with X0=0.29384, Y0=0.6254, Z0=0.4587254,

N0=24000 and N=8.

Figure 4. Key sensitivity test of the generated keystream with

respect to x0,y0 and z0 parameters.

a. with respect to N.

b. with respect to N0.

Figure 5. Key sensitivity test of the generated keystream .

CC is computed between K and the key streams: K1

generated when varying X0 by ∆X0=10
-14

, K2 generated

when varying Y0 by ∆Y0=10
-14

, K3 generated when

varying Z0 by ∆Z0=10
-14

, K4 generated when varying N0

by ∆N0=1 and K5 generated when varying N by ∆N=1.

The AC and CC functions are defined as:

 2K1K that such

Ksize

i
K-r][i2KK-[i]1K

)1Size(K
1)2K,1(KrCC

Ksize

i
K-r]K[iK-K[i]

Size(K)
1(K)rAC

≠

∑
−

=
+=

∑
−

=
+=

1)
1

(

0
)2)(1(

1)(

0
))((

(21)

where K is the mean value of the key stream k, K[i]

is the i
th

 element of K and r is the shift parameter.

 a. Auto-correlation. b. Cross correlation with K1.

 c. Cross correlation with K2. d. Cross correlation with K3.

 e. Cross correlation with K4.. f. Cross correlation with K5.

Figure 6. Correlation of the generated keystream.

4. Cryptosystem Security Analysis

Encryption and decryption results are given in this

section demonstrating the efficiency of our proposed

algorithm. We take the traditional 256×256 size 8 bits

“Lenna” image as example. The positions permutation

and the pseudorandom key stream used for grayscale

substitution are generated following the scheme

proposed in section 2.2. Original image and its

histogram are shown in Figures 7(a) and (b), and the

encrypted image and its histogram is shown in Figure

7(c) and (d). Initial parameters were: X0=

0.567676469135816, Y0= 0.60354653336181, Z0=

0.339824617849325, N0= 6067, N=11 KC =

0.703756097336475 and m=8 corresponding to the

230 bit key:

“1395F87B4BCB9514041766CE33B5BE7”. In

Figure 7(d) we can see the grayscale distribution of

the encrypted image has good balance property, and

the histogram is significantly different from that of the

original image which is secure against known

plaintext attack.

Chaos-Based Key Stream Generator Based on Multiple Maps Combinations…

237

 a. Plain image. b. Histogram of plain image.

 c. Encrypted image. d. Histogram of enciphered image.

e. Image decrypted with one f. Difference between (c) and (e).

 bit different of the correct key.

Figure 7. Key sensitivity.

4.1. Key Sensitivity

Recall that secure cryptosystem requires not only a

large key space but also a high key sensitivity. That is,

a slight change in the key should cause some large

changes in the ciphertext. This property makes the

cryptosystem of high security against statistical or

differential attacks. Since the user key is in 230 bits, the

key space is about 1.7254 .10
69

, which is sufficient to

resist the brute-force attack with the current computer

technology.

An encryption scheme has also to be key-sensitive,

meaning that a tiny change in the key will cause a

significant change in the output. Figure 7(e) shows an

example of an enciphered image generated using a

security key with only 1-bit difference. It can be

observed that the difference values are very close to the

expected value of pixel difference on two randomly

generated images (99.609375%). Figure 8 shows the

values of differences between the correct decrypted

image and the different decrypted images with the 230

possible keys that differs in one bit from the correct

one.

Figure 8. Differences between the corrected decrypted image and

those decrypted with the 230 possible keys that differs in one bit

from the correct key.

4.2. Correlation of Adjacent Pixels

To test the correlation properties of the enciphered

image, we performed statistical analysis on the

encryption algorithm. This is done by testing the

correlation between two vertically adjacent pixels, two

horizontally adjacent pixels, and two diagonally

adjacent pixels, respectively.

We randomly select 1000 pairs of two adjacent

pixels from the image then we calculate the correlation

coefficient of each pair using the following discrete

formulas [28]:

N

1i

2E(x))-i(x
N

D(x) ,
N

1i
ix

N
E(x)

N

1i
E(y))-iE(x))(y-i(x

N
y)Cov(x, where

D(y)D(x)

y)Cov(x,
xyr

∑
=

=∑
=

=

∑
=

=

=

11

1

.

 (22)

Here, E(x) is the estimation of mathematical

expectations of x, D(x) is the estimation of variance of

x, and cov(x, y) is the estimation of covariance

between x and y. x and y are grey-scale values of two

adjacent pixels in the image. Figure 9 shows the

correlation distribution of two vertically adjacent

pixels in the plain-image and those in the ciphered

image. The average correlation coefficients are

0.9792062 and 0.0030121 respectively. Similar results

for diagonal and vertical directions were obtained.

These are shown in Table 2. It is clearly visible that

correlation coefficients are very different when

comparing plain and ciphered images.

Table 2. Correlation coefficients of adjacent pixels of plain image,
ciphered image and a random one

 Plain image

‘Lena’

Ciphered

image

Random

image

Horizontal

Vertical

Diagonal

0.9537214

0.9792062

0.9245871

0.0046591

0.0030121

0.0047814

0.001562

0.005922

0.004006

The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

238

a. The plain Lena image.

b. The cipher image obtained using the proposed scheme.

Figure 9. Correlation analysis of two horizontally adjacent pixels.

4.3. Differential Attacks

It is clear that if one minor change in the plain image

can cause a significant change in the ciphered-image,

with respect to both diffusion and confusion, then a

differential attack may become inefficient. To test the

influence of one-pixel change on our whole encrypted

image, two common measures are used: NPCR and

UACI. The first one stands for the number of pixels

change rate while one-pixel of plain image is changed,

when the second is the unified average changing

intensity that measures the average intensity of

differences between the plain and ciphered image.

To calculate NPCR and UACI, consider two

ciphered images C1 and C2, whose corresponding plain

images have only one pixel difference. The gray values

of each pixels in C1 or C2 is labeled C1(i, j) or C2(i, j)

respectively. If we define a bipolar array D with the

same size as image C1 or C2, with D(i, j) being

determined by C1(i, j) and C2(i, j): if C1(i, j) = C2(i, j)

then D(i, j) = 0, otherwise D(i, j) = 1. The NPCR will

be defined by:

 %100
1

1 ×∑
=

∑
=

=

M

i

M

1j
j)D(i,

2M
NPCR (23)

where M is the border size of both images C1 and C2,

and NPCR measures the percentage of different pixel

numbers between the two images. The UACI is

defined by:

 %100
1 255

1 ×∑
=

∑
=

=

M

i

M

1j

j)(i,2C-j)(i,1C

2M
UACI (24)

Tests have been performed on the proposed

scheme, about the one-pixel change influence on a 256

grey-scale image of size 256×256. We computed the

average of both NPCP and UCAI when changes of

each pixel of the image are applied with the 256

possible value of grey level, i.e. average is taken on

the 256
3
 possible situations. The encryption process

was performed using the parameters presented in

section 4.

The obtained values of NPCR and UCAI were of

99.51% and 33.45% respectively. These results show

that even swiftly change in the original image will

result in significant change in the ciphered one. The

algorithm proposed has then good ability to anti

differential attack.

In Figure 10, we show the progression of the NPCR

and UCAI values with respect to the number of

iterations (confusion-diffusion) m. The graphs show

that both performance indices raise rapidly indicating

good confusion and diffusion effects. It is clear that

our proposed schema can achieve very accepted

performances with relatively small iteration number,

compared to other approaches.

Figure 10. Progress of NPCR and UACI with respect to the

number of confusion/diffusion iterations.

Chaos-Based Key Stream Generator Based on Multiple Maps Combinations…

239

4.4. Computational Complexity Analysis

Compared with traditional block ciphers [28] such as

DES, IDEA and NSSU, the proposed chaos-based

cryptosystem has some distinct properties. Here, tests

are performed on the encryption speed of the proposed

chaotic cryptosystem. The comparison between

different approaches is performed with respect to

practical time complexity, when executed in the same

environment and conditions. Most part of the

implementation was realized using Intel Assembly

instruction to guarantee the maximum of execution

speed. The speed of the proposed encryption algorithm

is much faster than most existing encryption ones. Its

average speed is about 30 MByte/s with a Pentium IV

3GHz personal computer. Table 3 shows the result of

the encryption speed and speed of some well-known

encryption algorithms in Crypto++ Library [29] using

the same machine. With such a speed, this image

encryption scheme can be used in Internet applications

over broadband network, where the encryption and

decryption time have to be short compared to the

transmission time. Table 4 gives an idea about the

Encryption/Decryption time when varying iterations

with corresponding NPCR and UACI values, using the

image of Lena 256×256, and the key previously used in

section 4.

Table 3. Encryption speed of the proposed scheme and some well-

known algorithms.

 Algorithm Speed (MB/s)

Proposed Approach
DES

AES (192-bit key)

AES (256-bit key)

29.785
6.212

11.472

10.972

Table 4. Encryption /Decryption time for different iterations values

with corresponding NPCR and UACI.

5. Conclusions

In this paper, an image encryption scheme based on

chaotic maps combination is proposed. The system is in

a stream-cipher architecture, where the pseudo-random

keystream generator is constructed using three chaotic

maps, serving the purpose of stream generation and

random mixing, respectively. It is found that such a

design can enhance the randomness and sensitivity to

initial conditions even under finite precision

implementation. We stress out that our approach is

applicable to almost all chaotic maps with mixing

property and that the achievement of the key streams

with the desired long cycle length is almost easy. A

detailed statistical analysis on both stream generation

system and the encryption scheme is given.

Experimental results, allow concluding that this

algorithm outperforms existing schemes, both in term

of speed and security. Having a high throughput, the

proposed system is ready to be applied in fast real time

encryption applications and suitable for practical use

in the secure transmission of confidential information

over the Web.

References

[1] Schneier B., Applied Cryptography: Protocols,

Algorithms, and Source Code in C, John Wiley

and Sons, New York, 1996.

[2] Daemen J. and Rijmen V., The Design of

Rijndael: AES - The Advanced Encryption

Standard, Springer-Verlag New York, Berlin,

2002.

[3] Kocarev L., Jakimoski G., Stojanovski T., and

Parlitz U., “From Chaotic Maps to Encryption

Schemes,” in Proceedings of IEEE International

Symposium Circuits and Systems, pp. 514-517,

1998.

[4] Sang T., Wang R., and Yan Y., “Perturbance-

Based Algorithm to Expand Cycle Length of

Chaotic Key Stream,” Electronics Letters, vol. 34,

no. 9, pp. 873-874, 1998.

[5] Behnia S., Akhshani A., Ahadpour S., and

Mahmodi H., “A Fast Chaotic Encryption Scheme

Based on Piecewise Nonlinear Chaotic Maps,”

Physics Letters A, vol. 366, no. 4-5, pp. 391-396,

2007.

[6] Wong K., Kwok B., and Law W., “A Fast Image

Encryption Scheme Based on Chaotic Standard

Map,” Physics Letters A, vol. 372, no. 15, pp.

2645-2652, 2008.

[7] Kwok H. and Tang W., “A Fast Image Encryption

System Based on Chaotic Maps With Finite

Precision Representation,” Chaos, Solitons and

Fractals, vol. 32, no. 4, pp. 1518-1529, 2007.

[8] He X., Zhu Q., and Gu P., “A New Chaos-Based

Encryption Method for Color Image,” Springer

Berlin/Heidelberg, vol. 4062, pp. 671-678, 2006.

[9] Gao T. and Chen Z., “A New Image Encryption

Algorithm Based on Hyper-Chaos,” Physics

Letters A, vol. 372, no. 4, pp. 394-400, 2008.

[10] Behnia S., Akhshani A., Mahmodi H., and

Akhavan A., “A Novel Algorithm for Image

Iterations Encryption

Time (ms)

Decryption

Time (ms)

NPCR

%

UACI

%

1
2

3

4
5

6

7
8

9

10
11

12

13
14

15

16
17

18

19
20

15
31

33

34
47

49

51
63

78

81
83

85

87
91

94

101
109

110

115
125

13
27

31

32
41

45

49
55

61

69
72

79

81
85

91

94
99

102

109
113

99.4325
99.6752

99.6764

99.6758
99.6746

99.6801

99.6808
99.6812

99.6806

99.6813
99.6823

99.6820

99.6819
99.6826

99.6824

99.6831
99.6829

99.6833

99.6829
99.6841

33.3105
33.47010

33.46387

33.47215
33.47102

33.47110

33.47852
33.48012

33.48458

33.47336
33.47025

33.47992

33.47991
33.48256

33.47011

33.48110
33.47854

33.47978

33.47820
33.48120

The International Arab Journal of Information Technology, Vol. 7, No. 3, July 2010

240

Encryption Based on Mixture of Chaotic Maps,”

Chaos, Solitons and Fractals, vol. 35, no. 4, pp.

408-419, 2008.

[11] Sun F., Liu S., Li Z., and Lü Z., “A Novel Image

Encryption Scheme Based on Spatial Chaos Map,”

Chaos, Solitons and Fractals, vol. 38, no. 3, pp.

631-640, 2008.

[12] Hu Y., Liao X., Wong K., and Zhou Q., “A True

Random Number Generator Based on Mouse

Movement and Chaotic Cryptography,” Chaos,

Solitons and Fractals, 2007.

[13] Asim M. and Jeoti V., “An Efficient Hybrid

Chaotic Image Encryption Scheme,” New

Technologies, Mobility and Security, pp. 471-480,

Springer, Netherlands, 2007.

[14] Chong F., Zhang Z., Chen Y., and Wang W., “An

Improved Chaos-Based Image Encryption

Scheme,” Lecture Notes in Computer Science, vol.

4487, pp. 575-582, Springer-Verlag, Berlin,

Heidelberg, 2007.

[15] Forré R., “The Hénon Attractor as A Keystream

Generator,” In Advances in Cryptology-

EuroCrypt’91, vol. 0547, pp. 76-81, Berlin,

Springer-Verlag, 1991.

[16] Pareek N., Patidar V., and Sud K., “Image

Encryption Using Chaotic Logistic Map,” Image

and Vision Computing, vol. 24, no. 9, pp. 926-934,

2006.

[17] Shujun L., Xuanqin M., and Yuanlong C., “Pseudo-

Random Bit Generator Based on Couple Chaotic

Systems and its Applications in Stream-Cipher

Cryptography,” in Proceedings of the Second

International Conference on Cryptology in India:

Progress in Cryptology, vol. 2247, pp. 316-329,

2001.

[18] Kotulski Z. and Szczepanski J., “On Constructive

Approach to Chaotic Pseudorandom Number

Generator,” in Proceedings of Regional Conference

on Military Communication and Information

Systems, Zegrze, pp. 191-203, 2000.

[19] Kelber K., Götz M., and Schwarz W., “Generation

of Chaotic Signals with N-Dimensional Uniform

Probability Distribution by Digital Filter

Structure,” in Proceedings of the 7
th
 IEEE Digital

Signal Processing Workshop (DSPWS’96),

Norway, Loen, pp. 486-489, 1996.

[20] Marcel A. and Michel D., The Logistic Map and

the Route to Chaos: From the Beginnings to

Modern Applications (Understanding Complex

Systems), Springer, 2006.

[21] Papoulis A., Probability, Random Variables, and

Stochastic Processes, McGraw-Hill, New York

1965.

[22] Williams D., Weighing the Odds: A Course in

Probability and Statistics, Cambridge University

Press, pp. 548, 2001.

[23] Kolmogorov-Smirnov Test Table, http://www.

eridlc.com/onlinetextbook/appendix/table7.htm

[24] Santis A., Ferrara A., and Masucci B., Discrete

Applied Mathematics , vol. 154, pp. 234, 2006.

[25] Shannon C., “Communication Theory of Secrecy

Systems,” Bell System Technical Journal, vol. 28,

pp. 656-715, 1949.

[26] Lian S., JinshengSun., and Wang Z., “Security

Analysis of a Chaos-Based Image Encryption

Algorithm,” Physica A 351, pp. 645-661, 2005.

[27] Chen G., Mao Y., and Charles K., “A Symmetric

Image Encryption Scheme Based on 3D Chaotic

Cat Maps,” Chaos Solitons and Fractals, pp. 749-

761, 2004.

[28] Vanstone S., Menezes A., and Oorschot P.,

Handbook of applied cryptography. London: CRC

Press, 1996.

[29] Crypto++ Library, http://www.cryptopp.com.

Kamel Faraoun received his

Master’s degree in computer

science from the Computer Science

Department of Djilali Liabbes

University, Algeria in 2002. His

current research areas include

computer safety systems, genetic

algorithms, fractal images compression evolutionary

programming and grammatical inferences, and

physical materials structures modeling. He is

preparing his PhD thesis in the field of computer

security using artificial intelligence systems.

